
Towards Performance Portability through
an Integrated Programming Eco-System

for Tensor Algebra

Gokcen Kestor, Roberto Gioiosa, Mark Raugas
Pacific Northwest National Laboratory

2

Outline

• Introduction and Background
§ Tensor Algebra COmpiler (TACO)
§ Minos Computing Library (MCL)

• TACO-MCL Integrated Software Stack
• Initial Results
• Conclusions

September 2, 2020P3HPC Workshop

3

Motivation

• The Cambrian era is upon us:
§ Hardware landscape:

ü Many custom accelerators are being developed
ü Each HW design has its own interface, performance and energy profile

§ Software landscape:
ü Complex workflows (simulations + in-situ data analytics, simulations + AI)
ü Many programming languages and frameworks (from C/C++ to Python, TensorFlow, etc.)

• Program and performance portability has become a major concern:
§ Current HPC systems: ORNL Summit, LLNL Sierra, SNL Trinity
§ Next HPC systems: ORNL Frontier, LLNL El Capitan, ANL Aurora

• Expecting multi-device systems with several classes of devices within a single
SoC (e.g., CPUs, GPUs, AI engines, FPGAs, …)

• Programming such systems is challenging!

September 2, 2020P3HPC Workshop

4

Proposal: A Portable Hardware/Software Stack

• Scientists express their algorithm with high-level DSLs that provide domain-
specific programming abstractions

• Compiler lowers DSL code to device-specific, highly-optimized code
• Dynamic runtime coordinates access to computing resources and data

transfers

P0 P1 P2 P3 P4 P5 P6 P7

MCL

OpenMP TFlow Kokkos TACO

App1 App2 App3 Applications

Domain-Specific Language

Hardware

September 2, 2020P3HPC Workshop

5

Tensor Algebra COmpiler (TACO)

• TACO is a fast and versatile library for linear and
tensor algebra

• C++ and Python extension to support complex
tensor expression
§ Mostly focused on sparse tensor algebra*

• Automatically generate
§ Sequential CPU code
§ Parallel OpenMP code
§ NVIDIA CUDA GPU code

* Not all sparse tensor algebra operations are supported

September 2, 2020P3HPC Workshop

Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and Saman
Amarasinghe. 2017. The tensor algebra compiler. Proc. ACM Program. Lang. 1,
OOPSLA, Article 77 (October 2017), 29 pages. DOI:https://doi.org/10.1145/3133901

6

TACO Example

C(𝑖, k) = 𝐴 𝑖, 𝑗 ∗ 𝐵(𝑗, 𝑘)

y(𝑖) = 𝐴 𝑖, 𝑗 ∗ 𝑥(𝑗)

OpenMP code
generation for
dense DGEMM
computation

CUDA code
generation for

sparse matrix-dense
vector computation

September 2, 2020P3HPC Workshop

7

TACO Software Stack

TACO C++

TACO Python
TACO

Compiler

Sequential

CUDA

OpenMP

NVIDIA GPU

X86 CPU

AMD GPU

AI Engine

FPGA

September 2, 2020P3HPC Workshop

8

TACO-MCL: Integrated Programming Eco-System
for Tensor Algebra

TACO C++/Python Language

TACO-MCL Compiler

MCL Runtime

Heterogeneous Devices

• Automatically generate portable MCL host code
and OpenCL kernels

• Break long expressions into smaller kernels for
multi-device execution

• Analyze data and control flow dependencies to
maximize asynchronous execution

• Asynchronous task execution and overlapping
of data transfers and computation

• Load balancing and resource management
• Multi-applications support

September 2, 2020P3HPC Workshop

9

The Minos Computing Library (MCL)

• Framework for programming extremely heterogeneous systems
§ Programming model and programming model runtime
§ Abstract low-level architecture details from programmers
§ Dynamic scheduling of work onto available resources

• Key programming features:
§ Applications factored into tasks
§ Asynchronous execution
§ Devices are managed by the scheduler
§ Co-schedule independent applications
§ Simplified APIs and programming model (based on OpenCL)

• Flexibility:
§ Scheduling framework
§ Multiple scheduling algorithms co-exist
§ Code portability
§ Resources allocated at the last moment

September 2, 2020P3HPC Workshop

Roberto Gioiosa, Burcu O. Mutlu, Seyong Lee, Jeffrey S. Vetter,
Giulio Picierro, and Marco Cesati. 2020. The Minos Computing
Library: efficient parallel programming for extremely
heterogeneous systems. In Proceedings of GPGPU '20). ACM, New
York, NY, USA, 1–10. DOI:https://doi.org/10.1145/3366428.3380770

10

Scaling Up and Down

Xilinx MPSoC ZynQ ZCU 102/106
September 2, 2020P3HPC Workshop

Apple MacBook Pro

Apple iMac Pro

NVIDIA DGX-1

(P100/V100)

IBM Summit

Same code runs on all these
systems without modification

11

TACO-MCL Software Stack

TACO C++

TACO Python
TACO-MCL
Compiler

Sequential

CUDA

OpenMP

NVIDIA GPU

X86 CPU

AMD GPU

AI Engine

FPGA

MCL

By using MCL has TACO backend, TACO
applications will:
• Leverage a broader classes of computing

devices
• Execute in multi-device environments
• Execute in a multi-application environment
• Exploit sophisticated scheduling and load

balancing algorithms
September 2, 2020P3HPC Workshop

12

TACO-MCL Workflow

TACO-MCL
Compiler

Computing
Device

MCL / CPU

Original TACO application

OpenCL kernel

C/C++ MCL driver

September 2, 2020P3HPC Workshop

13

Experimental Results 1/2

• CCSD(1) method from NWChem
§ Coupled cluster (CC) methods are commonly used in

the post Hartree-Fock ab initio quantum chemistry
and in nuclear physics computation.

§ The CC workflow is composed of iterative set of
excitation (singles (S), doubles (D), triples (T), and
quadruples (Q)) calculations

• Testbed:
§ NVIDIA DGX-1 V100
§ 2x Intel Xeon E5-2680, 768GB memory
§ 8x NVIDIA V100, 16GM memory, NVLink

September 2, 2020P3HPC Workshop

14

Experimental Results 2/2

0

1

2

3

4

5

6

7

8

Small Medium Large

TACO/MCL Speedup w.r.t. TACOProblem
Size

TACO
(seconds)

TACO/MCL
(seconds)

Speedup
w.r.t. TACO

Small 0.85 0.168 5.086

Medium 39.07 7.05 5.58

Large 1209.93 223.10 5.43

• TACO applications automatically
scale to use all GPUs

• All problem sizes show
scalability

• Expect similar speedups with
larger problems

• Not ideal speedup -- WIP
September 2, 2020P3HPC Workshop

15

Conclusions

• Program and performance portability has become a major concern
• Current and future systems feature multi-device, multi-class accelerators

§ Programming and porting applications on such systems is extremely difficult
§ Each device class has its own programming model
§ Need to manage data locality, load balancing, correctness, and resource utilization

• We developed and approach that attempts to solve the problem with an integrated
software stack:
§ Users develop applications using high-level DSLs
§ Compiler lower code to targets
§ Runtime manages data locality, load balancing, and computing resources

• With TACO-MCL, original TACO applications gains
§ Access to non-NVIDIA resources (AMD/Intel GPUs, FPGAs, AI engines)
§ Transparent and automatic access to multi-device systems
§ Transparent execution in multi-applications environments (complex workflows)

September 2, 2020P3HPC Workshop

Thank you

16

POC: Gokcen Kestor
gokcen.kestor@pnnl.gov

P3HPC Workshop

